3.2.59 \(\int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx\) [159]

3.2.59.1 Optimal result
3.2.59.2 Mathematica [A] (verified)
3.2.59.3 Rubi [A] (verified)
3.2.59.4 Maple [B] (verified)
3.2.59.5 Fricas [B] (verification not implemented)
3.2.59.6 Sympy [F]
3.2.59.7 Maxima [F(-1)]
3.2.59.8 Giac [F(-2)]
3.2.59.9 Mupad [F(-1)]

3.2.59.1 Optimal result

Integrand size = 38, antiderivative size = 178 \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {(1+i) \sqrt {a} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {2 (i A+5 B) \sqrt {a+i a \tan (c+d x)}}{15 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 (13 A-5 i B) \sqrt {a+i a \tan (c+d x)}}{15 d \sqrt {\tan (c+d x)}} \]

output
(-1-I)*(A-I*B)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^( 
1/2))*a^(1/2)/d+2/15*(13*A-5*I*B)*(a+I*a*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(1 
/2)-2/5*A*(a+I*a*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(5/2)-2/15*(I*A+5*B)*(a+I* 
a*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(3/2)
 
3.2.59.2 Mathematica [A] (verified)

Time = 6.37 (sec) , antiderivative size = 154, normalized size of antiderivative = 0.87 \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {i \left (\frac {15 \sqrt {2} a (A-i B) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \tan ^3(c+d x)}{\sqrt {i a \tan (c+d x)}}+2 \sqrt {a+i a \tan (c+d x)} \left (-3 i A+(A-5 i B) \tan (c+d x)+(13 i A+5 B) \tan ^2(c+d x)\right )\right )}{15 d \tan ^{\frac {5}{2}}(c+d x)} \]

input
Integrate[(Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]))/Tan[c + d*x]^( 
7/2),x]
 
output
((-1/15*I)*((15*Sqrt[2]*a*(A - I*B)*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x] 
])/Sqrt[a + I*a*Tan[c + d*x]]]*Tan[c + d*x]^3)/Sqrt[I*a*Tan[c + d*x]] + 2* 
Sqrt[a + I*a*Tan[c + d*x]]*((-3*I)*A + (A - (5*I)*B)*Tan[c + d*x] + ((13*I 
)*A + 5*B)*Tan[c + d*x]^2)))/(d*Tan[c + d*x]^(5/2))
 
3.2.59.3 Rubi [A] (verified)

Time = 0.97 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.10, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {3042, 4081, 27, 3042, 4081, 27, 3042, 4081, 27, 3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan (c+d x)^{7/2}}dx\)

\(\Big \downarrow \) 4081

\(\displaystyle \frac {2 \int \frac {\sqrt {i \tan (c+d x) a+a} (a (i A+5 B)-4 a A \tan (c+d x))}{2 \tan ^{\frac {5}{2}}(c+d x)}dx}{5 a}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sqrt {i \tan (c+d x) a+a} (a (i A+5 B)-4 a A \tan (c+d x))}{\tan ^{\frac {5}{2}}(c+d x)}dx}{5 a}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {i \tan (c+d x) a+a} (a (i A+5 B)-4 a A \tan (c+d x))}{\tan (c+d x)^{5/2}}dx}{5 a}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4081

\(\displaystyle \frac {\frac {2 \int -\frac {\sqrt {i \tan (c+d x) a+a} \left ((13 A-5 i B) a^2+2 (i A+5 B) \tan (c+d x) a^2\right )}{2 \tan ^{\frac {3}{2}}(c+d x)}dx}{3 a}-\frac {2 a (5 B+i A) \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left ((13 A-5 i B) a^2+2 (i A+5 B) \tan (c+d x) a^2\right )}{\tan ^{\frac {3}{2}}(c+d x)}dx}{3 a}-\frac {2 a (5 B+i A) \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left ((13 A-5 i B) a^2+2 (i A+5 B) \tan (c+d x) a^2\right )}{\tan (c+d x)^{3/2}}dx}{3 a}-\frac {2 a (5 B+i A) \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4081

\(\displaystyle \frac {-\frac {\frac {2 \int \frac {15 a^3 (i A+B) \sqrt {i \tan (c+d x) a+a}}{2 \sqrt {\tan (c+d x)}}dx}{a}-\frac {2 a^2 (13 A-5 i B) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {2 a (5 B+i A) \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {15 a^2 (B+i A) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {2 a^2 (13 A-5 i B) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {2 a (5 B+i A) \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {15 a^2 (B+i A) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {2 a^2 (13 A-5 i B) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {2 a (5 B+i A) \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4027

\(\displaystyle \frac {-\frac {-\frac {30 i a^4 (B+i A) \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-\frac {2 a^2 (13 A-5 i B) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {2 a (5 B+i A) \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {-\frac {\frac {(15-15 i) a^{5/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a^2 (13 A-5 i B) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {2 a (5 B+i A) \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}}{5 a}-\frac {2 A \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

input
Int[(Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(7/2),x 
]
 
output
(-2*A*Sqrt[a + I*a*Tan[c + d*x]])/(5*d*Tan[c + d*x]^(5/2)) + ((-2*a*(I*A + 
 5*B)*Sqrt[a + I*a*Tan[c + d*x]])/(3*d*Tan[c + d*x]^(3/2)) - (((15 - 15*I) 
*a^(5/2)*(I*A + B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I 
*a*Tan[c + d*x]]])/d - (2*a^2*(13*A - (5*I)*B)*Sqrt[a + I*a*Tan[c + d*x]]) 
/(d*Sqrt[Tan[c + d*x]]))/(3*a))/(5*a)
 

3.2.59.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4081
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*d - B*c)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*(n + 
1)*(c^2 + d^2))), x] - Simp[1/(a*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + 
f*x])^m*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c* 
m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x], x] /; Fr 
eeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 
0] && LtQ[n, -1]
 
3.2.59.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 554 vs. \(2 (145 ) = 290\).

Time = 0.14 (sec) , antiderivative size = 555, normalized size of antiderivative = 3.12

method result size
parts \(-\frac {A \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (15 i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \left (\tan ^{3}\left (d x +c \right )\right ) a -15 \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \left (\tan ^{4}\left (d x +c \right )\right ) a +52 \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{3}\left (d x +c \right )\right )-16 \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}-56 i \left (\tan ^{2}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+12 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{30 d \tan \left (d x +c \right )^{\frac {5}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )}+\frac {B \left (3 i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \left (\tan ^{2}\left (d x +c \right )\right ) a -4 i \tan \left (d x +c \right ) \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-4 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}}{6 d \tan \left (d x +c \right )^{\frac {3}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}}\) \(555\)
derivativedivides \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (15 i B \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{4}\left (d x +c \right )\right )+15 i A \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )-15 A \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{4}\left (d x +c \right )\right )-20 i B \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{3}\left (d x +c \right )\right )+15 B \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )-56 i A \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )+52 A \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{3}\left (d x +c \right )\right )+20 i B \sqrt {-i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-40 B \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )+12 i A \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-16 A \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )\right )}{30 d \tan \left (d x +c \right )^{\frac {5}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right ) \sqrt {-i a}}\) \(626\)
default \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (15 i B \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{4}\left (d x +c \right )\right )+15 i A \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )-15 A \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{4}\left (d x +c \right )\right )-20 i B \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{3}\left (d x +c \right )\right )+15 B \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )-56 i A \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )+52 A \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{3}\left (d x +c \right )\right )+20 i B \sqrt {-i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-40 B \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )+12 i A \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-16 A \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )\right )}{30 d \tan \left (d x +c \right )^{\frac {5}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right ) \sqrt {-i a}}\) \(626\)

input
int((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x,method=_R 
ETURNVERBOSE)
 
output
-1/30*A/d*(a*(1+I*tan(d*x+c)))^(1/2)/tan(d*x+c)^(5/2)*(15*I*2^(1/2)*ln((2* 
2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x 
+c))/(tan(d*x+c)+I))*tan(d*x+c)^3*a-15*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)* 
(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))* 
tan(d*x+c)^4*a+52*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d 
*x+c)^3-16*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)-5 
6*I*tan(d*x+c)^2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)+12*I*( 
a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2))/(a*tan(d*x+c)*(1+I*tan( 
d*x+c)))^(1/2)/(-I*a)^(1/2)/(-tan(d*x+c)+I)+1/6*B/d/tan(d*x+c)^(3/2)*(3*I* 
2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I 
*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^2*a-4*I*tan(d*x+c)*(-I*a)^(1 
/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-4*(a*tan(d*x+c)*(1+I*tan(d*x+c)) 
)^(1/2)*(-I*a)^(1/2))*(a*(1+I*tan(d*x+c)))^(1/2)/(a*tan(d*x+c)*(1+I*tan(d* 
x+c)))^(1/2)/(-I*a)^(1/2)
 
3.2.59.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 543 vs. \(2 (135) = 270\).

Time = 0.27 (sec) , antiderivative size = 543, normalized size of antiderivative = 3.05 \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {15 \, \sqrt {2} {\left (d e^{\left (6 i \, d x + 6 i \, c\right )} - 3 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 3 \, d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a}{d^{2}}} \log \left (\frac {{\left (\sqrt {2} d \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a}{d^{2}}} e^{\left (i \, d x + i \, c\right )} + \sqrt {2} {\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - 15 \, \sqrt {2} {\left (d e^{\left (6 i \, d x + 6 i \, c\right )} - 3 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 3 \, d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a}{d^{2}}} \log \left (-\frac {{\left (\sqrt {2} d \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a}{d^{2}}} e^{\left (i \, d x + i \, c\right )} - \sqrt {2} {\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) + 4 \, \sqrt {2} {\left ({\left (-17 i \, A - 10 \, B\right )} e^{\left (7 i \, d x + 7 i \, c\right )} + 3 i \, A e^{\left (5 i \, d x + 5 i \, c\right )} + 5 \, {\left (i \, A + 2 \, B\right )} e^{\left (3 i \, d x + 3 i \, c\right )} - 15 i \, A e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{30 \, {\left (d e^{\left (6 i \, d x + 6 i \, c\right )} - 3 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 3 \, d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )}} \]

input
integrate((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x, al 
gorithm="fricas")
 
output
-1/30*(15*sqrt(2)*(d*e^(6*I*d*x + 6*I*c) - 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e 
^(2*I*d*x + 2*I*c) - d)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a/d^2)*log((sqrt(2) 
*d*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a/d^2)*e^(I*d*x + I*c) + sqrt(2)*((I*A + 
 B)*e^(2*I*d*x + 2*I*c) + I*A + B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt( 
(-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/ 
(I*A + B)) - 15*sqrt(2)*(d*e^(6*I*d*x + 6*I*c) - 3*d*e^(4*I*d*x + 4*I*c) + 
 3*d*e^(2*I*d*x + 2*I*c) - d)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a/d^2)*log(-( 
sqrt(2)*d*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a/d^2)*e^(I*d*x + I*c) - sqrt(2)* 
((I*A + B)*e^(2*I*d*x + 2*I*c) + I*A + B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1) 
)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x 
- I*c)/(I*A + B)) + 4*sqrt(2)*((-17*I*A - 10*B)*e^(7*I*d*x + 7*I*c) + 3*I* 
A*e^(5*I*d*x + 5*I*c) + 5*(I*A + 2*B)*e^(3*I*d*x + 3*I*c) - 15*I*A*e^(I*d* 
x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + 
 I)/(e^(2*I*d*x + 2*I*c) + 1)))/(d*e^(6*I*d*x + 6*I*c) - 3*d*e^(4*I*d*x + 
4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) - d)
 
3.2.59.6 Sympy [F]

\[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=\int \frac {\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \left (A + B \tan {\left (c + d x \right )}\right )}{\tan ^{\frac {7}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate((a+I*a*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)**(7/2),x)
 
output
Integral(sqrt(I*a*(tan(c + d*x) - I))*(A + B*tan(c + d*x))/tan(c + d*x)**( 
7/2), x)
 
3.2.59.7 Maxima [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x, al 
gorithm="maxima")
 
output
Timed out
 
3.2.59.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=\text {Exception raised: TypeError} \]

input
integrate((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x, al 
gorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Non regular value [0] was discarded 
 and replaced randomly by 0=[66]Warning, replacing 66 by -57, a substituti 
on variab
 
3.2.59.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=\int \frac {\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{{\mathrm {tan}\left (c+d\,x\right )}^{7/2}} \,d x \]

input
int(((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2))/tan(c + d*x)^(7/2 
),x)
 
output
int(((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2))/tan(c + d*x)^(7/2 
), x)